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Overview 
 Background 
 Demand Paging 
 Process Creation 
 Page Replacement 
 Allocation of Frames 
 Thrashing 
 Operating System Examples 
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Background 
 Why we don’t want to run a program that is 

entirely in memory…. 
Many code for handling unusual errors or conditions 

 Certain program routines or features are rarely used 

 The same library code used by many programs 

Arrays, lists and tables allocated but not used 

 We want better memory utilization 
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Background 
 Virtual memory – separation of user logical memory  
 from physical memory 

 To run a extremely large process 
Logical address space can be much larger than physical address space 

 To increase CPU/resources utilization 
higher degree of multiprogramming degree 

 To simplify programming tasks 
Free programmer from memory limitation 

 To run programs faster 
less I/O would be needed to load or swap 

 Virtual memory can be implemented via 
 Demand paging 
 Demand segmentation: more complicated due to variable sizes 
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Virtual Memory vs. Physical Memory 
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.START 
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1. Initialize PCB, PC  
    registers and  
    Page Table. 
2. Load Code into 
    memory. 
3. Running 
4. Finish. 
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int data[8]; 
main( ) { 
    data[3] = 3 * 7; 
    print(data); 
} 

10 v 

.END 
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Demand Paging 
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Demand Paging 
 A page rather than the whole process is brought into 

memory only when it is needed 
 Less I/O needed  Faster response 
 Less memory needed  More users 

 Page is needed when there is a reference to the page 
 Invalid reference  abort 
 Not-in-memory  bring to memory via paging 

 pure demand paging 
 Start a process with no page 
 Never bring a page into memory until it is required 
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Demand Paging 
 A swapper (midterm scheduler) manipulates the 

entire process, whereas a pager is concerned 
with the individual pages of a process 

 Hardware support  
 Page Table: a valid-invalid bit 

1  page in memory 
0  page not in memory 
Initially, all such bits are set to 0 

 Secondary memory (swap space, backing store): 
Usually, a high-speed disk (swap device) is use 
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int data[8]; 
main( ) { 
    data[3] = 3 * 7; 
    print(data); 
} 

10 v 

.END 

Demand Paging 
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Page Fault 

 First reference to a page will trap to OS  
  page-fault trap 
1. OS looks at the internal table (in PCB) to 

decide 
 Invalid reference  abort 
 Just not in memory  continue 

2. Get an empty frame 
3. Swap the page from disk (swap space) into 

the frame 
4. Reset page table, valid-invalid bit = 1 
5. Restart instruction 
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Page Fault Handling Steps 
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Page Replacement  
 If there is no free frame when a page fault 

occurs 
 Swap a frame to backing store 
 Swap a page from backing store into the frame 
Different page replacement algorithms pick 

different frames for replacement 
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Demand Paging Performance 
 Effective Access Time (EAT): (1 – p) x ma + p x pft 

 P: page fault rate, ma : mem. access time, pft : page fault time 

 Example: ma = 200ns, pft = 8ms 
 EAT = (1 - p) * 200ns + p * 8ms  

         = 200ns + 7,999,800ns x p 
 Access time is proportional to the page fault rate 

 If one access out of 1,000 causes a page fault, then 
  EAT = 8.2 microseconds.  slowdown by a factor of 40! 

 For degradation less then 10%:  
  220 > 200+ 7,999,800 × p ,  
 p < 0.0000025 one access out of 399,990 to page fault 
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Demand Paging Performance (Con’t) 
 Programs tend to have locality of reference 
 Locality means program often accesses memory 

addresses that are close together 
 A single page fault can bring in 4KB memory content 
 Greatly reduce the occurrence of page fault 

 major components of page fault time (about 8 ms) 
1. serve the page-fault interrupt 
2. read in the page from disk (most expensive) 
3. restart the process 
 The 1st and 3rd can be reduced to several hundred 

instructions 
 The page switch time is close to 8ms  
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Process Creation 
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Process & Virtual Memory 
 Demand Paging: only bring in the page 

containing the first instruction 

 Copy-on-Write: the parent and the child 
process share the same frames initially, and 
frame-copy when a page is written 

 Memory-Mapped File: map a file into the 
virtual address space to bypass file system 
calls (e.g., read(), write()) 
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Copy-on-Write 
 Allow both the parent and the child process to 

share the same frames in memory 
 If either process modifies a frame, only then a 

frame is copied 
 COW allows efficient process creation (e.g., 

fork() ) 
 Free frames are allocated from a pool of 

zeroed-out frames (security reason) 
 The content of a frame is erased to 0 
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When a child process is forked 
#include <stdio.h> 
void main( ) 
{ 
    int A; 
    /* fork child process */ 
    A = fork( ); 
 
    if (A != 0) {  
       /* parent process */ 
       int test1=0; 
    }  
    printf(“process ends”); 
} 

Parent Child 

Heap 

Code 

Stack 

Heap 

Code 

Stack 
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After a page is modified 

Heap 

Code 

Stack 

Heap 

Code 

Stack 

Parent Child 
#include <stdio.h> 
void main( ) 
{ 
    int A; 
    /* fork child process */ 
    A = fork( ); 
 
    if (A != 0) {  
       /* parent process */ 
       int test1=0; 
    }  
    printf(“process ends”); 
} 
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Memory-Mapped Files 
 Approach: 

 MMF allows file I/O to be treated as routine memory access by 
mapping a disk block to a memory frame 

 A file is initially read using demand paging. Subsequent 
reads/writes to/from the file are  

 treated as ordinary memory accesses 

 Benefit: 
 Faster file access by using memory access rather than read() 

and write() system calls 
 Allows several processes to map the SAME file allowing the 

pages in memory to be SHARED 
 Concerns: Security, data lost, more programming efforts 
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Memory-Mapped File Example 
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int buf; 
int fd = open( filename, O_RDWR ); 
lseek( fd, 1024, SEEK_SET ); 
read( fd, &buf, sizeof(int) ); 
buf ++; 
lseek( fd, 1024, SEEK_SET ); 
write( fd, &buf, sizeof(int) ); 
close(fd); 

int fd = open( filename, O_RDWR ); 
int* area = mmap( 0, BUFSIZE,     
 PROT_READ | PROT_WRITE, 
 MAP_SHARED, fd, 1024 ); 
area[0]++; 
close(fd); 
munmap( area, BUFSIZE ); 

User space VM 

File: 

kernel file cache 
… 

… 

text 

Initialized 
data 

heap 

stack 

1234 

1234 

Copy to 
user 

1 2 2234 

2234 

Copy to 
kernel 

1234 2234 Memory 
mapped 
portion 

buf 
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Review Slides ( I ) 
 Virtual memory? Physical Memory? 
 Demand paging?  
 Page table support for demand paging? 
 OS handling steps for page fault? 
 Page replacement? 
 Copy-on-write? Usage? 
 Memory-mapped file? Usage? 
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Page Replacement 
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Page Replacement Concept 
 When a page fault occurs with no free frame  
 swap out a process, freeing all its frames, or 
 page replacement: find one not currently used 

and free it 
Use dirty bit to reduce overhead of page transfers – 
only modified pages are written to disk 

 Solve two major problems for demand paging 
 frame-allocation algorithm: 

Determine how many frames to be allocated to 
a process 

 page-replacement algorithm: 
select which frame to be replaced 
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Page Replacement (Page Fault) Steps 
1. Find the location of the desired page on disk 

2. Find a free frame 

 If there is a free frame, use it 
 If there is no free frame, use a page replacement 

algorithm to select a victim frame 

3. Read the desired page into the (newly) free 
frame. Update the page & frame tables 

4. Restart the process 
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Page Replacement (Page Fault) Example 
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Page Replacement Algorithms 
 Goal: lowest page-fault rate 
 Evaluation: running against a string of 

memory references (reference string) and 
computing the number of page faults 

 Reference string: 
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
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Replacement Algorithms 
 FIFO algorithm 

 Optimal algorithm 

 LRU algorithm 

 Counting algorithm 
 LFU 
MFU 
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First-In-First-Out (FIFO) Algorithm 
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 The oldest page in a FIFO queue is replaced 
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
 3 frames (available memory frames = 3) 
   9 page faults 
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FIFO Illustrating Belady’s Anomaly 
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 Does more allocated frames guarantee less page fault? 
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
 4 frames (available memory frames = 4) 

   10 page faults! 
 Belady’s anomaly 

 Greater allocated frames  more page fault 
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FIFO Illustrating Belady’s Anomaly 
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Optimal (Belady) Algorithm 
 Replace the page that will not be used for the longest 

period of time 
 need future knowledge 

 4 frames: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5  
 In practice, we don’t have future knowledge 

 Only used for reference & comparison  
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 6 page faults! 
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LRU Algorithm (Least Recently Used) 
 An approximation of optimal algorithm:  
 looking backward, rather than forward 

 It replaces the page that has not been used 
for the longest period of time  

 It is often used, and is considered as quite 
good  
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LRU Algorithm Implementations 
 Counter implementation 

 page referenced: time stamp is copied into the counter 
 replacement: remove the one with oldest counter 

linear search is required… 
 Stack implementation 

 page referenced: move to top of the double-linked list 
 replacement: remove the page at the bottom 
 4 frames: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
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 8 page faults! 
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Stack Algorithm 
 A property of algorithms 
 Stack algorithm: the set of pages in memory for 

n frames is always a subset of the set of pages 
that would be in memory with n +1 frames 

 Stack algorithms do not suffers from Belady's 
anomaly 

 Both optimal algorithm and LRU algorithm are 
stack algorithm  
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LRU approximation algorithms 
 Few systems provide sufficient hardware 

support for the LRU page-replacement 
 additional-reference-bits algorithm 
 second-chance algorithm 
 enhanced second-chance algorithm 
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Counting Algorithms 
 LFU Algorithm (least frequently used) 
 keep a counter for each page 
 Idea: An actively used page should have a large 

reference count 
 MFU Algorithm (most frequently used) 
 Idea: The page with the smallest count was 

probably just brought in and has yet to be used 
 Both counting algorithm are not common 
 implementation is expensive 
 do not approximate OPT algorithm very well 
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Allocation of Frames 
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Introduction 
 Each process needs minimum number of frames 
 E.g.: IBM 370 – 6 pages to handle Storage to 

Storage MOVE instruction: 
 Both operands are in main storage,  
    the first operand is B1(Reg.ID)+D1,  
    the second operand is B2(Reg. ID)+D2,  
    L plus 1 is the length. 
 instruction is 6 bytes, may span 2 pages 
 Moving content could across 2 pages 

Bits  0                7 8                15 16     19 20                           31 32      35 36                            47 

Op code L B1 D1 B2 D2

instruction 

B1+D1 

B2+D2 

6B 

L 

L 
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Frame Allocation 
 Fixed allocation 
 Equal allocation – 100 frames, 5 processes  20 

frames/process 
 Proportional allocation – Allocate according to the 

size of the process 

 Priority allocation 
 using proportional allocation based on priority, 

instead of size 
 if process P generates a page fault 

select for replacement one of its frames 
select for replacement from a process with lower priority 
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Frame Allocation 
 Local allocation: each process select from its 

own set of allocated frames 
 Global allocation: process selects a 

replacement frame from the set of all frames 
 one process can take away a frame of another 

process 
 e.g., allow a high-priority process to take frames 

from a low-priority process 
 good system performance and thus is common 

used 
A minimum number of frames must be 

maintained for each process to prevent trashing 
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Review Slides ( II ) 
 Page replacement steps?  
 Place replacement algorithm goal? 
 Dirty bit usage? 
 Belady’s anomaly? 
 FIFO? Optimal? LRU? 
 Fixed vs. priority frame allocation? 
 Global vs. local frame allocation? 
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Thrashing 
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Definition of Thrashing 
 If a process does not have “enough” frames 
 the process does not have # frames it needs to 

support pages in active use  
 Very high paging activity 

 A process is thrashing if it is spending more 
time paging than executing 

thrashing 

CPU utilization 

degree of multiprogramming 
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Thrashing 
 Performance problem caused by thrashing 
 (Assume global replacement is used) 
processes queued for I/O to swap (page fault) 
 low CPU utilization 
OS increases the degree of multiprogramming 
 new processes take frames from old processes 
 more page faults and thus more I/O  
 CPU utilization drops even further 

 To prevent thrashing, must provide enough frames 
for each process: 
Working-set model, Page-fault frequency 
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Working-Set Model 
 Locality: a set of pages that are actively used 

together  
 Locality model: as a process executes, it moves 

from locality to locality 
 program structure (subroutine, loop, stack) 
 data structure (array, table)  

 Working-set model (based on locality model) 
 working-set window: a parameter ∆ (delta) 
 working set: set of pages in most recent ∆  page 

references (an approximation locality)  



Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 50 

Working-Set Example 

 If ∆ = 10: 
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Working-Set Model 
 Prevent thrashing using the working-set size  
WSSi : working-set size for process i 
D = ∑ WSSi   (total demand frames) 
 If D > m (available frames) ⇒ thrashing 
 The OS monitors the WSSi of each process and 

allocates to the process enough frames  
if D << m, increase degree of MP 
if D > m, suspend a process 

: 1. prevent thrashing while keeping the degree of      
 multiprogramming as high as possible 

  2. optimize CPU utilization 
 : too expensive for tracking 
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Page Fault Frequency Scheme 
 Page fault frequency directly measures and 

controls the page-fault rate to prevent thrashing 
 Establish upper and lower bounds on the desired 

page-fault rate of a process 
 If page fault rate exceeds the upper limit 

allocate another frame to the process 

 If page fault rate falls below the lower limit 
remove a frame  from the process 
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Page Fault Frequency Scheme 
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Working Sets and Page Fault Rates 
peak of new locality 

 Memory has locality property 
 When the process moves to a new WS, the PF 

rate rises toward a peak 
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Review Slides ( III ) 
 Thrashing definition? 
 Process locality? 
 When will thrashing happen? Solution? 
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Reading Material & HW 
 Chap 9 
 Problems 
 9.2, 9.4, 9.6, 9.8, 9.9, 9.12, 9.14, 9.17, 9.19, 9.21 
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Backup 
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Windows NT  
 Uses demand paging with clustering. Clustering 

brings in pages surrounding the faulting page  
 Processes are assigned working-set minimums and 

working-set maximums 
 WS minimum: the minimum # of pages the process is 

guaranteed to be in memory 
 A process can have pages up to its WS maximum 
 When the amount of free memory in the system falls 

below a threshold, automatic working set trimming 
is performed 

 Working set trimming removes pages from processes 
that have pages in excess of their WS minimum 
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