
Operating System:
Chap9 Virtual Memory
Management
National Tsing-Hua University
2016, Fall Semester

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 2

Overview
 Background
 Demand Paging
 Process Creation
 Page Replacement
 Allocation of Frames
 Thrashing
 Operating System Examples

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 3

Background
 Why we don’t want to run a program that is

entirely in memory….
Many code for handling unusual errors or conditions

 Certain program routines or features are rarely used

 The same library code used by many programs

Arrays, lists and tables allocated but not used

 We want better memory utilization

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 4

Background
 Virtual memory – separation of user logical memory
 from physical memory

 To run a extremely large process
Logical address space can be much larger than physical address space

 To increase CPU/resources utilization
higher degree of multiprogramming degree

 To simplify programming tasks
Free programmer from memory limitation

 To run programs faster
less I/O would be needed to load or swap

 Virtual memory can be implemented via
 Demand paging
 Demand segmentation: more complicated due to variable sizes

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 5

Virtual Memory vs. Physical Memory

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 6

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x9), AX
CALL print, (0x9)
POP AX
.END
.SPACE (8)

0 - i
1 - i
2 - i
3 - i
4 - i
5 - i
6 - i
7 - i
8 - i
9 - i
10 - i
11 - i
12 - i
13 - i
14 - i
15 - i

0
1
2
3
4
5
6
7
8
9
10
….
….
30
31
32

Page Table

Memory

MOVE AX, 3

3
8
6
5
1
31

………
………

PUSH AX

MULT AX, 7
MOVE (0x9), AX

CALL print, (0x9)

POP AX

VA PA

....
.…

………
……..

v
v
v
v
v
v

1. Initialize PCB, PC
 registers and
 Page Table.
2. Load Code into
 memory.
3. Running
4. Finish.

Valid bit

0
1
2
3
4
5
6

32 v

21

int data[8];
main() {
 data[3] = 3 * 7;
 print(data);
}

10 v

.END

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 7

Demand Paging

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 8

Demand Paging
 A page rather than the whole process is brought into

memory only when it is needed
 Less I/O needed  Faster response
 Less memory needed  More users

 Page is needed when there is a reference to the page
 Invalid reference  abort
 Not-in-memory  bring to memory via paging

 pure demand paging
 Start a process with no page
 Never bring a page into memory until it is required

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 9

Demand Paging
 A swapper (midterm scheduler) manipulates the

entire process, whereas a pager is concerned
with the individual pages of a process

 Hardware support
 Page Table: a valid-invalid bit

1  page in memory
0  page not in memory
Initially, all such bits are set to 0

 Secondary memory (swap space, backing store):
Usually, a high-speed disk (swap device) is use

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 10

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x9), AX
CALL print, (0x9)
POP AX
.END
.SPACE (8)

0 - i
1 - i
2 - i
3 - i
4 - i
5 - i
6 - i
7 - i
8 - i
9 - i
10 - i
11 - i
12 - i
13 - i
14 - i
15 - i

0
1
2
3
4
5
6
7
8
9
10
….
….
30
31
32

Page Table

Memory

MOVE AX, 3

3
8
6
5
1
31

………
………

PUSH AX

MULT AX, 7
MOVE (0x9), AX

CALL print, (0x9)

POP AX

VA PA

....
.…

………
……..

v
v
v
v
v
v

Valid bit

0
1
2
3
4
5
6

32 v

21

int data[8];
main() {
 data[3] = 3 * 7;
 print(data);
}

10 v

.END

Demand Paging

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 11

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 12

Page Fault

 First reference to a page will trap to OS
  page-fault trap
1. OS looks at the internal table (in PCB) to

decide
 Invalid reference  abort
 Just not in memory  continue

2. Get an empty frame
3. Swap the page from disk (swap space) into

the frame
4. Reset page table, valid-invalid bit = 1
5. Restart instruction

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 13

Page Fault Handling Steps

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 14

Page Replacement
 If there is no free frame when a page fault

occurs
 Swap a frame to backing store
 Swap a page from backing store into the frame
Different page replacement algorithms pick

different frames for replacement

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 15

Demand Paging Performance
 Effective Access Time (EAT): (1 – p) x ma + p x pft

 P: page fault rate, ma : mem. access time, pft : page fault time

 Example: ma = 200ns, pft = 8ms
 EAT = (1 - p) * 200ns + p * 8ms

 = 200ns + 7,999,800ns x p
 Access time is proportional to the page fault rate

 If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.  slowdown by a factor of 40!

 For degradation less then 10%:
 220 > 200+ 7,999,800 × p ,
 p < 0.0000025 one access out of 399,990 to page fault

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 16

Demand Paging Performance (Con’t)
 Programs tend to have locality of reference
 Locality means program often accesses memory

addresses that are close together
 A single page fault can bring in 4KB memory content
 Greatly reduce the occurrence of page fault

 major components of page fault time (about 8 ms)
1. serve the page-fault interrupt
2. read in the page from disk (most expensive)
3. restart the process
 The 1st and 3rd can be reduced to several hundred

instructions
 The page switch time is close to 8ms

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 17

Process Creation

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 18

Process & Virtual Memory
 Demand Paging: only bring in the page

containing the first instruction

 Copy-on-Write: the parent and the child
process share the same frames initially, and
frame-copy when a page is written

 Memory-Mapped File: map a file into the
virtual address space to bypass file system
calls (e.g., read(), write())

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 19

Copy-on-Write
 Allow both the parent and the child process to

share the same frames in memory
 If either process modifies a frame, only then a

frame is copied
 COW allows efficient process creation (e.g.,

fork())
 Free frames are allocated from a pool of

zeroed-out frames (security reason)
 The content of a frame is erased to 0

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 20

When a child process is forked
#include <stdio.h>
void main()
{
 int A;
 /* fork child process */
 A = fork();

 if (A != 0) {
 /* parent process */
 int test1=0;
 }
 printf(“process ends”);
}

Parent Child

Heap

Code

Stack

Heap

Code

Stack

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 21

After a page is modified

Heap

Code

Stack

Heap

Code

Stack

Parent Child
#include <stdio.h>
void main()
{
 int A;
 /* fork child process */
 A = fork();

 if (A != 0) {
 /* parent process */
 int test1=0;
 }
 printf(“process ends”);
}

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 22

Memory-Mapped Files
 Approach:

 MMF allows file I/O to be treated as routine memory access by
mapping a disk block to a memory frame

 A file is initially read using demand paging. Subsequent
reads/writes to/from the file are

 treated as ordinary memory accesses

 Benefit:
 Faster file access by using memory access rather than read()

and write() system calls
 Allows several processes to map the SAME file allowing the

pages in memory to be SHARED
 Concerns: Security, data lost, more programming efforts

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 23

Memory-Mapped File Example

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 24

int buf;
int fd = open(filename, O_RDWR);
lseek(fd, 1024, SEEK_SET);
read(fd, &buf, sizeof(int));
buf ++;
lseek(fd, 1024, SEEK_SET);
write(fd, &buf, sizeof(int));
close(fd);

int fd = open(filename, O_RDWR);
int* area = mmap(0, BUFSIZE,
 PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 1024);
area[0]++;
close(fd);
munmap(area, BUFSIZE);

User space VM

File:

kernel file cache
…

…

text

Initialized
data

heap

stack

1234

1234

Copy to
user

1 2 2234

2234

Copy to
kernel

1234 2234 Memory
mapped
portion

buf

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 25

Review Slides (I)
 Virtual memory? Physical Memory?
 Demand paging?
 Page table support for demand paging?
 OS handling steps for page fault?
 Page replacement?
 Copy-on-write? Usage?
 Memory-mapped file? Usage?

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 26

Page Replacement

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 27

Page Replacement Concept
 When a page fault occurs with no free frame
 swap out a process, freeing all its frames, or
 page replacement: find one not currently used

and free it
Use dirty bit to reduce overhead of page transfers –
only modified pages are written to disk

 Solve two major problems for demand paging
 frame-allocation algorithm:

Determine how many frames to be allocated to
a process

 page-replacement algorithm:
select which frame to be replaced

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 28

Page Replacement (Page Fault) Steps
1. Find the location of the desired page on disk

2. Find a free frame

 If there is a free frame, use it
 If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page & frame tables

4. Restart the process

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 29

Page Replacement (Page Fault) Example

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 30

Page Replacement Algorithms
 Goal: lowest page-fault rate
 Evaluation: running against a string of

memory references (reference string) and
computing the number of page faults

 Reference string:
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 31

Replacement Algorithms
 FIFO algorithm

 Optimal algorithm

 LRU algorithm

 Counting algorithm
 LFU
MFU

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 32

First-In-First-Out (FIFO) Algorithm

2

1

2
3

2

1

3
4

3

2

4
1

4

3

1
2

1

4

2
5

2

1

5
5

2

1

1
5

2

1

2
3

5

2

3
4

3

5

4
4

3

5

5

 The oldest page in a FIFO queue is replaced
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (available memory frames = 3)
  9 page faults

1
1

head
(new)

tail
(old)

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 33

FIFO Illustrating Belady’s Anomaly

1 2 5 1 2 3 4 5
1
1

2

1

2
3

2

1

3
4

3

2

4
head
(new)

tail
(old)

1

4

3

2

1

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

 Does more allocated frames guarantee less page fault?
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 4 frames (available memory frames = 4)

  10 page faults!
 Belady’s anomaly

 Greater allocated frames  more page fault

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 34

FIFO Illustrating Belady’s Anomaly

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 35

Optimal (Belady) Algorithm
 Replace the page that will not be used for the longest

period of time
 need future knowledge

 4 frames: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 In practice, we don’t have future knowledge

 Only used for reference & comparison

1 2 5 1 2 3 4 5 1 2 3 4
1

head

tail

1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

5

1

2

3

5

4

2

3

5

4

2

3

5

 6 page faults!

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 36

LRU Algorithm (Least Recently Used)
 An approximation of optimal algorithm:
 looking backward, rather than forward

 It replaces the page that has not been used
for the longest period of time

 It is often used, and is considered as quite
good

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 37

LRU Algorithm Implementations
 Counter implementation

 page referenced: time stamp is copied into the counter
 replacement: remove the one with oldest counter

linear search is required…
 Stack implementation

 page referenced: move to top of the double-linked list
 replacement: remove the page at the bottom
 4 frames: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 2 5 1 2 3 4 5 1 2 3 4
1

head

tail

2
1

3
2
1

4
3
2
1

1
4
3
2

2
1
4
3

5
2
1
4

1
5
2
4

2
1
5
4

3
2
1
5

4
3
2
1

5
4
3
2

 8 page faults!

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 38

Stack Algorithm
 A property of algorithms
 Stack algorithm: the set of pages in memory for

n frames is always a subset of the set of pages
that would be in memory with n +1 frames

 Stack algorithms do not suffers from Belady's
anomaly

 Both optimal algorithm and LRU algorithm are
stack algorithm

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 39

LRU approximation algorithms
 Few systems provide sufficient hardware

support for the LRU page-replacement
 additional-reference-bits algorithm
 second-chance algorithm
 enhanced second-chance algorithm

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 40

Counting Algorithms
 LFU Algorithm (least frequently used)
 keep a counter for each page
 Idea: An actively used page should have a large

reference count
 MFU Algorithm (most frequently used)
 Idea: The page with the smallest count was

probably just brought in and has yet to be used
 Both counting algorithm are not common
 implementation is expensive
 do not approximate OPT algorithm very well

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 41

Allocation of Frames

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 42

Introduction
 Each process needs minimum number of frames
 E.g.: IBM 370 – 6 pages to handle Storage to

Storage MOVE instruction:
 Both operands are in main storage,
 the first operand is B1(Reg.ID)+D1,
 the second operand is B2(Reg. ID)+D2,
 L plus 1 is the length.
 instruction is 6 bytes, may span 2 pages
 Moving content could across 2 pages

Bits 0 7 8 15 16 19 20 31 32 35 36 47

Op code L B1 D1 B2 D2

instruction

B1+D1

B2+D2

6B

L

L

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 43

Frame Allocation
 Fixed allocation
 Equal allocation – 100 frames, 5 processes  20

frames/process
 Proportional allocation – Allocate according to the

size of the process

 Priority allocation
 using proportional allocation based on priority,

instead of size
 if process P generates a page fault

select for replacement one of its frames
select for replacement from a process with lower priority

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 44

Frame Allocation
 Local allocation: each process select from its

own set of allocated frames
 Global allocation: process selects a

replacement frame from the set of all frames
 one process can take away a frame of another

process
 e.g., allow a high-priority process to take frames

from a low-priority process
 good system performance and thus is common

used
A minimum number of frames must be

maintained for each process to prevent trashing

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 45

Review Slides (II)
 Page replacement steps?
 Place replacement algorithm goal?
 Dirty bit usage?
 Belady’s anomaly?
 FIFO? Optimal? LRU?
 Fixed vs. priority frame allocation?
 Global vs. local frame allocation?

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 46

Thrashing

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 47

Definition of Thrashing
 If a process does not have “enough” frames
 the process does not have # frames it needs to

support pages in active use
 Very high paging activity

 A process is thrashing if it is spending more
time paging than executing

thrashing

CPU utilization

degree of multiprogramming

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 48

Thrashing
 Performance problem caused by thrashing
 (Assume global replacement is used)
processes queued for I/O to swap (page fault)
 low CPU utilization
OS increases the degree of multiprogramming
 new processes take frames from old processes
 more page faults and thus more I/O
 CPU utilization drops even further

 To prevent thrashing, must provide enough frames
for each process:
Working-set model, Page-fault frequency

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 49

Working-Set Model
 Locality: a set of pages that are actively used

together
 Locality model: as a process executes, it moves

from locality to locality
 program structure (subroutine, loop, stack)
 data structure (array, table)

 Working-set model (based on locality model)
 working-set window: a parameter ∆ (delta)
 working set: set of pages in most recent ∆ page

references (an approximation locality)

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 50

Working-Set Example

 If ∆ = 10:

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 51

Working-Set Model
 Prevent thrashing using the working-set size
WSSi : working-set size for process i
D = ∑ WSSi (total demand frames)
 If D > m (available frames) ⇒ thrashing
 The OS monitors the WSSi of each process and

allocates to the process enough frames
if D << m, increase degree of MP
if D > m, suspend a process

: 1. prevent thrashing while keeping the degree of
 multiprogramming as high as possible

 2. optimize CPU utilization
 : too expensive for tracking

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 52

Page Fault Frequency Scheme
 Page fault frequency directly measures and

controls the page-fault rate to prevent thrashing
 Establish upper and lower bounds on the desired

page-fault rate of a process
 If page fault rate exceeds the upper limit

allocate another frame to the process

 If page fault rate falls below the lower limit
remove a frame from the process

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 53

Page Fault Frequency Scheme

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 54

Working Sets and Page Fault Rates
peak of new locality

 Memory has locality property
 When the process moves to a new WS, the PF

rate rises toward a peak

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 55

Review Slides (III)
 Thrashing definition?
 Process locality?
 When will thrashing happen? Solution?

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 56

Reading Material & HW
 Chap 9
 Problems
 9.2, 9.4, 9.6, 9.8, 9.9, 9.12, 9.14, 9.17, 9.19, 9.21

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 57

Backup

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 58

Windows NT
 Uses demand paging with clustering. Clustering

brings in pages surrounding the faulting page
 Processes are assigned working-set minimums and

working-set maximums
 WS minimum: the minimum # of pages the process is

guaranteed to be in memory
 A process can have pages up to its WS maximum
 When the amount of free memory in the system falls

below a threshold, automatic working set trimming
is performed

 Working set trimming removes pages from processes
that have pages in excess of their WS minimum

	Operating System:�Chap9 Virtual Memory Management
	Overview
	Background
	Background
	Virtual Memory vs. Physical Memory
	投影片編號 6
	Demand Paging
	Demand Paging
	Demand Paging
	Demand Paging
	投影片編號 11
	Page Fault
	Page Fault Handling Steps
	Page Replacement	
	Demand Paging Performance
	Demand Paging Performance (Con’t)
	Process Creation
	Process & Virtual Memory
	Copy-on-Write
	When a child process is forked
	After a page is modified
	Memory-Mapped Files
	Memory-Mapped File Example
	投影片編號 24
	Review Slides (I)
	Page Replacement
	Page Replacement Concept
	Page Replacement (Page Fault) Steps
	Page Replacement (Page Fault) Example
	Page Replacement Algorithms
	Replacement Algorithms
	First-In-First-Out (FIFO) Algorithm
	FIFO Illustrating Belady’s Anomaly
	FIFO Illustrating Belady’s Anomaly
	Optimal (Belady) Algorithm
	LRU Algorithm (Least Recently Used)
	LRU Algorithm Implementations
	Stack Algorithm
	LRU approximation algorithms
	Counting Algorithms
	Allocation of Frames
	Introduction
	Frame Allocation
	Frame Allocation
	Review Slides (II)
	Thrashing
	Definition of Thrashing
	Thrashing
	Working-Set Model
	Working-Set Example
	Working-Set Model
	Page Fault Frequency Scheme
	Page Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Review Slides (III)
	Reading Material & HW
	Backup
	Windows NT

